
Parsing the Q-table
▪ After training 10,000 times on all 60 puzzles (𝛼 = 0.5, 𝛾 = 0.5, 

𝜖 = 0.1), our Q-table contains 92,183 states and 430,545 actions

▪ We pass through these states, comparing the rankings by Q-

value to those from other strategies

▪ Ranking correlations with

Kendall 𝜏 show overall

whether strategy 

matches Q-table

▪ Generally negative

if fox moves 

prioritized

▪ Generally positive

for moves that get

bunnies closer to 

burrows

Moves from optimal

solutions
▪ Top ranked move based

on maximizing number 

of bunnies in burrows 

matches Q-table in 38%

of cases

▪ Next best strategy: 

minimize average 

Euclidean distance to

burrows over bunnies

Other trends
▪ The fraction of 

recommended fox

moves appears 

to be correlated with 

piece distribution on the

board

Single-player game by SmartGames with 60 sample 

puzzles and solutions in manual

▪ 5 × 5 grid

▪ Raised cells

▪ Burrows

▪ Mushrooms
▪ Anywhere

▪ Stationary 

during 

gameplay

▪ Foxes
▪ Not on raised

cells

▪ Move forward 

and back

▪ Bunnies
▪ Anywhere

▪ Bounce over 

other pieces

Despite being simple to explain, it isn’t easy to win!

JUMPIN’ GAME

SOLVING JUMPIN’ USING 

ZERO-DEPENDENCY 

REINFORCEMENT 

LEARNING

Rachel Ostic,1 Oliver Benning,1 Patrick Boily2

1, 2University of Ottawa
2Data Action Lab, Ottawa

2Idlewyld Analytics and Consulting Services, Wakefield

▪ Difficulty ranges from 2 to 80 moves to solve
▪ Not all manual solutions are optimal!

▪ How difficult is it to win by moving pieces at random?
▪ Length of random 

solution roughly 

polynomial with 

actual puzzle 

difficulty

▪ Fit: 𝑦 = 0.3 𝑥2.9

INITIAL NOTES

METHODS

RESULTS

Win by placing all 

bunnies in burrows

Use Python to create three modules:

1. Game 

mechanics
▪ Encode rules

▪ Initialize game

▪ Query and perform 

available moves

2. Solution
▪ Build solution tree 

(breadth first or 

depth first)

▪ Prune previously

seen states

▪ Move ranking 

strategies

3. Train and test
▪ Create model 

templates

▪ Implement Q-

learning updates

▪ Test performance

Comparison of move 

ranking strategies
▪ We’re interested in 

finding easily-to-

understand strategies

▪ Maximizing bunnies in 

burrows is consistently 

among the most efficient 

solutions

Q-learning implementation
▪ After solving a puzzle, we assign a reward equal to the reciprocal 

of the solution length to reinforce shorter solutions more strongly

▪ Backtracking update to Q-table with Bellman equation:

𝑞𝑛𝑒𝑤 𝑆𝑡 , 𝑎𝑡 = 𝑞 𝑆𝑡 , 𝑎𝑡 + 𝛼 𝑟𝑡 + 𝛾 max
𝑎∈ 𝑎𝑡+1

𝑞 𝑆𝑡+1, 𝑎 − 𝑞 𝑆𝑡 , 𝑎𝑡

where 𝑆𝑡 is the board state, 𝑎𝑡 is the action taken, and 𝑟𝑡 is the 

reward at step t

Exploring 

hyperparameters
▪ The Bellman equation 

has two tunable 

parameters, learning rate 

𝛼 and discount factor 𝛾
▪ Another, 𝜖, for the 

exploration rate

▪ 𝛼 has little effect on 

convergence 

▪ Setting 𝛾 too close 

to 1 leads to 

divergent behavior

▪ Varying 𝜖 balances 

amount of training 

to solve optimally 

vs. monotonic 

improvement

V
a

ry
in

g
 

V
a

ry
in

g
 

Fox first

Burrowed

OUTLOOK

Distilled strategy?
▪ Consistently move bunnies so as to maximize number in burrows 

until a fox move opens up new options

Future directions
• Game mechanics module accommodates larger board size or 

extra pieces

• Swap out game rules for a more complex board game (e.g. 

chess)

• Incorporate different reinforcement learning techniques (e.g.

deep Q-learning, policy gradient approach)


