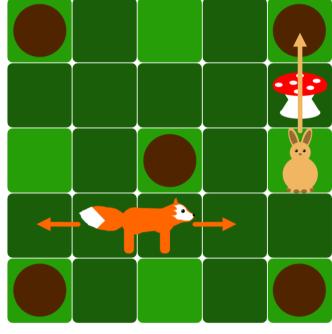
SOLVING JUMPIN' USING ZERO-DEPENDENCY REINFORCEMENT LEARNING

JUMPIN' GAME

Single-player game by **SmartGames** with 60 sample puzzles and solutions in manual

- 5 × 5 grid
- **Raised cells**
- Burrows
- **Mushrooms**
 - Anywhere
 - Stationary during gameplay
- Foxes
 - Not on raised cells
 - Move forward and back
- **Bunnies**
 - Anywhere
 - Bounce over other pieces

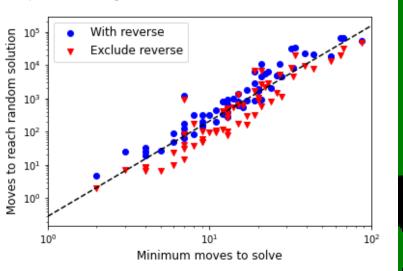


Win by placing all bunnies in burrows

Despite being simple to explain, it isn't easy to win!

INITIAL NOTES

- Difficulty ranges from 2 to 80 moves to solve Not all manual solutions are optimal!
- How difficult is it to win by moving pieces at random?
 - Length of random solution roughly polynomial with actual puzzle difficulty
 - Fit: $y = 0.3 x^{2.9}$



Rachel Ostic,¹ Oliver Benning,¹ Patrick Boily² ^{1, 2}University of Ottawa

²Data Action Lab, Ottawa ²Idlewyld Analytics and Consulting Services, Wakefield

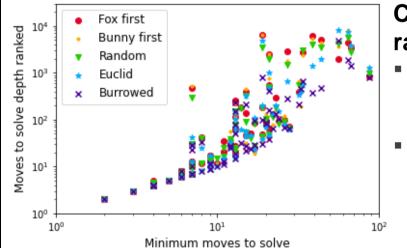
METHODS

Use **Python** to create three modules:

- Game 1. mechanics
- Encode **rules**
- Initialize game
- Query and perform available moves
- (**breadth** first or **depth** first) Prune previously seen states

2. Solution

Move ranking strategies



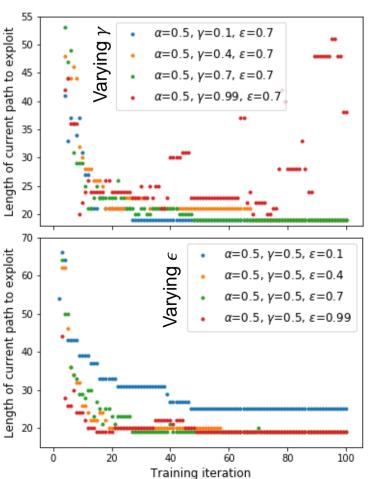
Q-learning implementation

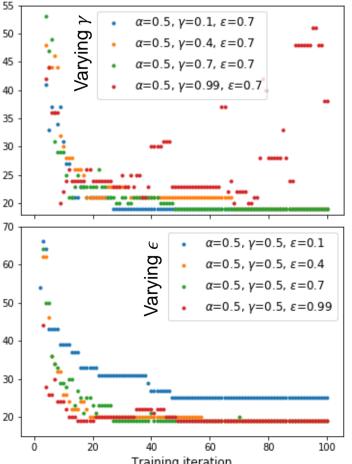
- After solving a puzzle, we assign a reward equal to the reciprocal of the solution length to reinforce shorter solutions more strongly
- Backtracking update to Q-table with Bellman equation: $q_{new}(S_t, a_t) = q(S_t, a_t) + \alpha \left(r_t + \gamma \max_{a \in \{a_{t+1}\}} q(S_{t+1}, a) - q(S_t, a_t) \right)$

where S_t is the board state, a_t is the action taken, and r_t is the reward at step t

Exploring hyperparameters

- The Bellman equation has two tunable parameters, learning rate α and discount factor γ
- Another, ϵ , for the exploration rate
 - α has little effect on convergence
 - Setting γ too close to 1 leads to divergent behavior
 - Varying ϵ balances amount of training to solve optimally vs. monotonic improvement





Train and test 3.

- Build solution tree Create model templates Implement Q
 - learning updates
 - Test performance

Comparison of move ranking strategies

- We're interested in finding easily-to-
- understand strategies
- Maximizing bunnies in burrows is consistently among the most efficient solutions

RESULTS

Parsing the Q-table

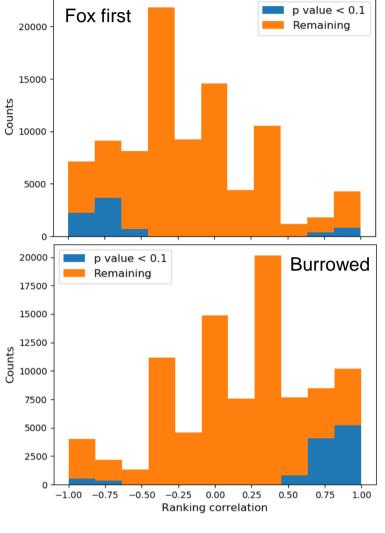
- After training 10,000 times on all 60 puzzles ($\alpha = 0.5$, $\gamma = 0.5$, $\epsilon = 0.1$), our Q-table contains 92,183 states and 430,545 actions
- We pass through these states, comparing the rankings by Qvalue to those from other strategies
- Ranking correlations with Kendall τ show overall whether strategy matches Q-table
 - Generally negative if fox moves prioritized
 - Generally positive for moves that get bunnies closer to burrows

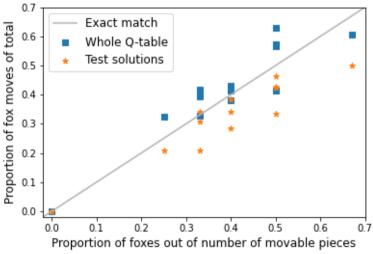
Moves from optimal solutions

- Top ranked move based on maximizing number of bunnies in burrows matches Q-table in 38% of cases
- Next best strategy: minimize average Euclidean distance to burrows over bunnies

Other trends

The fraction of recommended fox moves appears to be correlated with piece distribution on the board





OUTLOOK

Distilled strategy?

 Consistently move bunnies so as to maximize number in burrows until a fox move opens up new options

Future directions

- Game mechanics module accommodates larger board size or extra pieces
- Swap out game rules for a more complex board game (e.g. chess)
- Incorporate different reinforcement learning techniques (e.g. deep Q-learning, policy gradient approach)