¢ -3

é

SOLVING JUMPIN’ USING
ZERO-DEPENDENCY
REINFORCEMENT
LEARNING

é >

é

Rachel Ostic,! Oliver Benning,! Patrick Boily?
L2University of Ottawa

?Data Action Lab, Ottawa

ldlewyld Analytics and Consulting Services, Wakefield

1. Game

Single-player game by SmartGames with 60 sample
puzzles and solutions in manual

= 5x5grid
Raised cells
Burrows
Mushrooms
= Anywhere
= Stationary
during
gameplay
Foxes

Moves to solve depth ranked

mechanics .

Encode ru

Initialize game
Query and perform *®
available moves

2. Solution

(breadth first or

depth first)

Prune previously

seen states

= Move ranking
strategies

les

Fox first

Random
Euclid

Bunny first

Burrowed

Build solution tree =

Use Python to create three modules:

3. Train and test
Create model
templates
Implement Q-
learning updates
Test performance

Comparison of move
ranking strategies

We're interested in
finding easily-to-
understand strategies
Maximizing bunnies in
burrows is consistently
among the most efficient

Parsing the Q-table

RESULTS ®o®

After training 10,000 times on all 60 puzzles (¢ = 0.5, y = 0.5,

e = 0.1), our Q-table contains 92,183 states and 430,545 actions
We pass through these states, comparing the rankings by Q-
value to those from other strategies

Ranking correlations with

Kendall T show overall

whether strategy

matches Q-table

= Generally negative

if fox moves
prioritized
Generally positive
for moves that get
bunnies closer to
burrows

Moves from optimal

solutions

= Top ranked move based
on maximizing number
of bunnies in burrows
matches Q-table in 38%

4]
—
c
3
]

15000 4

10000 ~

-

Fox first

I pvalue < 0.1

Remaining

— |

20000 MW p value < 0.1

17500 4

15000 4

12500 4

10000 4

7500 A

5000

Remaining

Burrowed

of cases

2500 A

- w solutions Next best strategy:
Minimum moves to solve .. . 0
minimize average
Euclidean distance to

burrows over bunnies

= Not on raised
cells

= Move forward
and back =

Bunnies

= Anywhere

= Bounce over
other pieces

- |

0.50 0.75

___ T T T T T
-1.00 -0.75 -0.50 -0.25 000 0.25
Ranking correlation

Q-learning implementation

After solving a puzzle, we assign a reward equal to the reciprocal
of the solution length to reinforce shorter solutions more strongly
Backtracking update to Q-table with Bellman equation:

Gnew (St ar) = q(Sg,a.) + a (Tt 4 aer?ax }CI(St+1; a) — q(Se, at)) -

At41

where S; is the board state, a; is the action taken, and r; is the
reward at step t

Exact match

B Whole Q-table
Test solutions

Other trends

The fraction of
recommended fox
moves appears

to be correlated with
piece distribution on the
board 0 {m

00 01 02 03 04 05 06 07F
Proportion of foxes out of number of movable pieces

Win by placing all
bunnies in burrows

Despite being simple to explain, it isn’'t easy to win!

Proportion of fox moves of total

Exploring

hyperparameters
|N|T|AL NOTES < & = The Bellman equation
has two tunable

= Difficulty ranges from 2 to 80 moves to solve parameters, learning rate

= Not all manual solutions are optimal! a and discount factor y
= Another, €, for the

exploration rate

a has little effect on
convergence
Setting y too close
to 1 leads to
divergent behavior
Varying e balances
amount of training
to solve optimally
VS. monotonic | . | .
Improvement - o >

Training iteration

a=0.5, y=0.1, £=0.7
a=0.5, y=0.4, £=0.7
a=0.5, y=0.7, =07
a=0.5, y=0.99, £=0.7

Varying y

OUTLOOK &

Distilled strategy?
= Consistently move bunnies so as to maximize number in burrows
until a fox move opens up new options

Length of current path to exploit

= How difficult is it to win by moving pieces at random?
= Length of random _ -
solution roughly £ 3 L
polynomial with
actual puzzle
difficulty
= Fit:y = 0.3 x2?

a=0.5, y=0.5, £=0.1
a=0.5, y=0.5 £=0.4
a=0.5, y=0.5, £=0.7
a=0.5, y=0.5, £=0.99

10° 4
Future directions
Game mechanics module accommodates larger board size or
extra pieces
Swap out game rules for a more complex board game (e.qg.
chess)
Incorporate different reinforcement learning techniques (e.g.
deep Q-learning, policy gradient approach)

10° 5

1D2 4

10° 1

ll}':l 4

Mowves to reach random solution
Length of current path to exploit

L ...

Minimum moves to solve

