Characterization of quantum confinement in GaAs using photoluminescence spectroscopy

Rachel Ostic, Aidan Schiff-Kearn, Jean-Michel Ménard Department of Physics, University of Ottawa, Canada

Introduction

- Semiconductors play an important role in many solid state devices including integrated circuits and solar cells.
- To improve performance and tunability, the first step is reliable characterization.
- One tunable parameter is sample thickness.

Method: Photoluminescence spectroscopy	
Diption	Conduction band
Abse Ene	Emission of

3-D: Pure bulk GaAs 300 µm thick Conduction banc _ T = 300 K

Al_{0.2}Ga_{0.8}As 56 nm $AI_{0.95}Ga_{0.05}As$ 40 nm 7 nm GaAs

Quantum confinement

- Occurs when the scale of the sample is comparable to that of the de Broglie wavelength of the electrons $\lambda = h/p$.
- As dimensions decrease, the energy of the possible electron states increases.
- Particle in a box model: $E \propto (n/L)^2$ for n, an integer and L, the dimension of the space.

Why GaAs?

- Direct bandgap semiconductor for efficient emission of photoluminescence
- AlGaAs/GaAs heterostructures can be grown to isolate thin GaAs layers:

Results

Photoluminescence collected at room temperature

quantum wells.

Experiment

- Sample is excited using a laser diode
- Photoluminescence and scattered diode light are collected using a 3" lens and spectrally resolved

L = 7 nmDiscrete energy levels E_i in quantum well

- Approximation: $V_0 = \infty$
- Ground state energy E_1 is increased by ΔE relative to unconfined ground state, with $\Delta E = \frac{\hbar^2}{2m^*} \left(\frac{\pi}{L}\right)^2 = 0.12 \text{ eV}$ [1]

where $m^* = 0.063m_0$ is the effective mass of a confined electron.

[1] M. Cardona, P. Yu, Fundamentals of Semiconductors, Springer, 2010

815

825

Conclusion and future research

At room temperature, bandgap shifts from 1.42 eV to 1.54 eV due to quantum confinement. This agrees with the infinite potential well model. Future projects

Investigate temperature dependence of bandgap in 2-D and 3-D samples.

lens f = 6 cmon translation stage

- Perform measurements at cryogenic temperatures to observe electronhole pairs known as excitons
- Use existing set-up to characterize new samples

