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[ Motivation sSupercontinuum Generation

Supercontinuum (SC) sources are important for
photonic device testing, optical coherence tomography,
and optical communication [1].

Nonlinear optical propagation in photonic crystal fibers
(PCFs) can lead to a broad and flat output spectrum, but
little 1s known about their polarization properties.
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We demonstrate a free-space polarization-sensitive i
spectroscopy system covering a 3-octave bandwidth f g e i o

capable of measuring the spectrum of the light P e | S [ Bl vieed e §

propagating in each of a fiber’s principal axes. R . S | BN, )H; E g
We characterize the input polarization and power ’ (e A g ' g -
dependences of a SC generated in a GeO,-doped PCF. I gt WRHE, R G AT
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Fig. 4: Evolution of the SC spectrum at the output of the fiber as we rotate the input linear polarization at a fixed pulse

energy of 0.3 nJ (a, b) and 1.1 nJ (d, e). c,f) Ratios of the TE and TM polarization components of the integrated
spectra.

* The elevated power ratios at 8 = 0° and 90° map out the location of each principal axis and indicate that
light Injected at these angles Is most polarized at the output of the PCF.

« At O =45°and 135°, the ratio is 1, meaning that there Is an equal optical power distributed In both
polarization components aligned along a principal axes.

* The spectral shadows at 8 = 90° In Fig. 4 (a) and (d) and at & = 0° In Fig. 4 (b) and (e) show that light
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Fig. 1: Scanning electron microscope (SEM) image of the PCF scatters into orthogonal fiber axes at the output of the fiber; likely due to the fiber clamping mechanisms.
* The core of the PCF has a small asymmetry, with an average . o | 0
diameter of 4.7 um, and displays low birefringence. . . L
* GeO,-doping concentration of 50% in the center of the 5; 10 10 _
preform Is measured with an electron probe micro-analyzer. > i " 0
* Doping provides a high refractive index contrast An ~ 0.045 n ‘ 3
reducing modal overlap with the air-SiO, interface, which ? | g -20 g
reduces propagation loss and enhances nonlinear effects. @ O
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Fig. 5: Evolution of the spectrum (separated in its TE and TM components) as we Iincrease the pulse energy
- launched in the fiber from 0.3 to 36 nJ. The input linear polarization is set along one of the principal axes of the
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Fig. 2: Dispersion profile and germania concentration of the fiber * Red-shifting Raman solitons and their corresponding dispersive waves extend the output SC from 450 to

2150 nm when launching linearly polarized light along a principal axis.
* Dispersion profile is measured by placing the fiber in a

Mach-Zehnder interferometer. » In the TM-polarized SC, the lack of defined solitonic structure and large spectral weight at short
» The zero-dispersion wavelength is 1047 nm. wavelengths indicate that Rayleigh scattering may intrinsically be the main depolarization mechanism [2].

Experiment [ Conclusion }

We demonstrate the polarization sensitivity of our spectrometer, successfully separating orthogonal

m I I ‘ polarization components aligned to the PCF’s principal axes.

PBS L Our results reveal wavelength and pulse energy dependences in depolarization mechanisms, a result that Is
Fig. 3: Schematic of the experimental setup not possible with conventional measurement techniques such as an Optical Spectrum Analyzer (OSA).

The laser delivers 180 fs pulses at A = 1030 nm. Our spectrometer holds the potential to become the new standard in characterizing fiber-based SC sources
Spectrum is measured with a Czerny-Turner as It unveils the polarization properties of each spectral component.

Monochromator (CTM) employing 3 gratings and 3
nhotodetectors.
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Ultrabroadband polarizer (UBBP) selects the polarization
state of the beam sent into the spectrometer.




